Word Equations over Graph Products
نویسندگان
چکیده
For monoids that satisfy a weak cancellation condition, it is shown that the decidability of the existential theory of word equations is preserved under graph products. Furthermore, it is shown that the positive theory of a graph product of groups can be reduced to the positive theories of those factors, which commute with all other factors, and the existential theories of the remaining factors. Both results also include suitable constraints for the variables. Larger classes of constraints lead in many cases to undecidability results.
منابع مشابه
The Word Problem and Related Results for Graph Product Groups
A graph product is the fundamental group of a graph of groups. Amongst the simplest examples are HNN groups and free products with amalgamation. The torsion and conjugacy theorems are proved for any group presented as a graph product. The graphs over which some graph product has a solvable word problem are characterised. Conditions are then given for the solvability of the word and order proble...
متن کاملA new approach in graph- based integrated production and distribution scheduling for perishable products
This study is concerned with how the quality of perishable products can be improved by shortening the time interval between production and distribution. As special types of food such as dairy products decay fast, the integration of production and distribution scheduling (IPDS) is investigated. An integrated scheduling of both processes improves the performance and costs because the separated sc...
متن کاملOne-Relator Quotients of Graph Products
In this paper, we generalise Magnus’ Freiheitssatz and solution to the word problem for one-relator groups by considering one relator quotients of certain classes of right-angled Artin groups and graph products of locally indicable polycyclic groups.
متن کاملar X iv : 1 30 9 . 12 90 v 2 [ cs . D M ] 2 3 Se p 20 13 Logspace computations in graph products
We consider three important and well-studied algorithmic problems in group theory: the word, geodesic, and conjugacy problem. We show transfer results from individual groups to graph products. We concentrate on logspace complexity because the challenge is actually in small complexity classes, only. The most difficult transfer result is for the conjugacy problem. We have a general result for gra...
متن کاملSolution sets for equations over free groups are EDT0L languages -- ICALP 2015 version
We show that, given a word equation over a finitely generated free group, the set of all solutions in reduced words forms an EDT0L language. In particular, it is an indexed language in the sense of Aho. The question of whether a description of solution sets in reduced words as an indexed language is possible has been been open for some years [9, 10], apparently without much hope that a positive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003